
Tipboard Documentation
Release 1.4.2

Allegro Group

March 06, 2017

Contents

1 Overview 3
1.1 Project assumptions . 3

2 How to install 5
2.1 Prerequisites . 5
2.2 Preparing environment for installation . 5
2.3 Installing with pip . 6
2.4 Verification . 6

3 Configuration 7
3.1 Default configuration . 7
3.2 Launching Tipboard app . 7
3.3 Customising tile layout . 8

4 Tiles 11
4.1 Customising tiles . 11
4.2 Color palette . 11
4.3 Common elements . 12
4.4 Library of available tiles . 12

5 API 35
5.1 API key . 35
5.2 Available resources . 35

6 Extras 39
6.1 jira-ds.py . 39
6.2 client_code_example.py . 39
6.3 fabfile.py . 39

7 Change Log 41
7.1 1.4.1 . 41
7.2 1.4.0 . 41
7.3 1.3.1 . 41
7.4 1.3.0 . 42
7.5 1.2.0 . 42
7.6 1.1.0 . 42
7.7 1.0.0 . 43

8 License 45

i

HTTP Routing Table 47

ii

Tipboard Documentation, Release 1.4.2

Contents:

Contents 1

Tipboard Documentation, Release 1.4.2

2 Contents

CHAPTER 1

Overview

Tipboard is a system for creating dashboards, written in JavaScript and Python. Its widgets (‘tiles’ in Tipboard’s
terminology) are completely separated from data sources, which provides great flexibility and relatively high degree
of possible customizations.

Because of its intended target (displaying various data and statistics in your office), it is optimized for larger screens.

Similar projects: Geckoboard, Dashing.

Project assumptions

1. Defining a dashboard layout (number of lines, columns, types of tiles etc.).

2. Clear separation between tiles and data sources.

3. Ability to create own tiles and scripts querying data sources (e.g. Jira, Bamboo, Confluence etc.).

4. Feeding tiles via REST API.

3

http://www.geckoboard.com/
http://shopify.github.io/dashing/

Tipboard Documentation, Release 1.4.2

4 Chapter 1. Overview

CHAPTER 2

How to install

You can install Tipboard on a variety of sensible operating systems. This guide assumes Ubuntu Server 12.04 LTS
and presents shell command examples accordingly.

Prerequisites

Tipboard requires Python 2.7 which can be installed with this command:

$ sudo apt-get install python-dev python-virtualenv

Another dependency which needs to be satisfied before proceeding further is Redis server:

$ sudo apt-get install redis-server

Optional yet recommended packages

One of such packages is supervisor - it facilitates program administration (e.g. its reboot), especially if there are
a few instances launched on the machine.

Based on the Tornado framework, Tipboard has a built-in server available, but a typical use case assumes communica-
tion with the world via reverse proxy (e.g. using nginx or apache).

Note: Although configuration of reverse proxy is out of scope of this manual, we would like to emphasise that
Tipboard use Web Sockets – a relatively new mechanism – and thus you should ensure a server in a version that will
support it (e.g. nginx >= 1.3.13 or apache2 >= 2.4.6). By default Ubuntu 12.04 offers older versions – you may
then use backports.

Note: It will be useful to have an updated version of pip (i.e. >= 1.4) and virtualenv (i.e. >= 1.10).

Preparing environment for installation

Start by creating a user, the privileges of whom will be used by the application (for the needs of this manual, let’s
create the user “pylabs”):

$ sudo adduser pylabs --home /home/pylabs --shell /bin/bash
$ sudo su - pylabs

5

http://redis.io/

Tipboard Documentation, Release 1.4.2

Virtual environment

Continue by creating a virtual environment that will help you conveniently separate your instance from what you
already have installed in the system (let’s say we name it “tb-env”):

$ cd /home/pylabs
$ virtualenv tb-env

Activate the created virtual environment with the following command:

$ source /home/pylabs/tb-env/bin/activate

Note: It is worth saving the above line in the ~/.profile file. As a result, the virtual environment will be activated
automatically whenever you log in on the machine.

Note: Further setup assumes an activated virtual environment, which is denoted by (tb-env) prefix in your shell
prompt.

Installing with pip

After creating and activating virtualenv, install the latest (current) version of Tipboard package available on pypi
(“Python Package Index”) with the following command:

(tb-env)$ pip install tipboard

Verification

To verify if installation has been successful, launch this command:

(tb-env)$ tipboard runserver

If you see the message “Listening on port...” instead of errors, it means that installation was successful and you may
proceed to the next section.

6 Chapter 2. How to install

CHAPTER 3

Configuration

The description below assumes that you have installed Tipboard correctly and use a default configuration that is the
starting point for steps presented below (see section How to install).

Default configuration

First thing that you need to do after a successful installation is to create an empty config that will provide a base for
your customizations. Type in this command:

(tb-env)$ tipboard create_project <name_of_project>

It will create ~/.tipboard directory with the following content:

• settings-local.yaml file that defines the layout of tiles on the dashboard you are creating;

• settings-local.py file in which you can overwrite default (global) application settings; a description of
options and their default values has been presented in this file;

• custom_tiles subdir to place your own tiles.

Note: Before you send anything to your tiles, you have to get your API key first, which is described in the API key
section.

Launching Tipboard app

Having default config in place, you may launch Tipboard with the command:

(tb-env)$ tipboard runserver [<host>] [<port>]

...where host and port parameters are optional (by default these are localhost and 7272; if you want the
application to listen on all the network interfaces, set host to 0.0.0.0).

You can now point your web browser to http://localhost:7272 - you should see a basic, empty layout with
tiles in 2 lines of 4 columns each.

7

https://github.com/allegro/tipboard/blob/develop/tipboard/settings.py

Tipboard Documentation, Release 1.4.2

Customising tile layout

As mentioned previously, the layout of tiles in a dashboard is defined by layout_config.yaml file. The file is
in the YAML format, the description of which is beyond the scope of this manual. However, it is worth indicating
that YAML has certain format requirements – indentation should have a unified structure (be a multiplication of a
number, e.g. 4), when creating indentations spaces should not be mixed with tabs.

Below you can find a list of options that can be saved in the file. Indentations indicate the position of a given option in
the configuration (e.g. details are superior to page_title).

details
page_tile

layout
row_X_of_Y
col_X_of_Y

tile_template
tile_id
tile
timeout

where:

details
A section that contains additional configuration parameters; for the time being it is only ‘page_title’; depending
on his needs, the users add other elements.

page_tile
A section that defines the title of a page to appear in the web browser after entering the dashboard.

layout
A section that contains a proper configuration of the tile layout.

row_X_of_Y
Defines a row hight; a sum of Xs should equal Y.

col_X_of_Y
Similar to above but concerns a column width in a given row.

tile_template
The name of a tile template to be displayed (e.g. pie_chart, line_chart, cumulative_flow)

tile_id
A tile identifier in a HTML document and key identifier in Redis.

title
A title to be displayed in the upper part of the tile.

timeout
The length (in seconds) of data life (if data is not sent during this time, you will be informed that the data is
stalled). Since interval used by the application to check for those timeouts is 5 seconds, it doesn’t make sense
to set this value smaller than this.

New in version 1.3.0.

The method of using row_X_of_Y and col_X_of_Y has been presented in the examples below. If you want to see
how it’s done “from the kitchen”, and you have some basic knowledge of CSS styling, have a look here;

Note: If you want to present a lot of data on your dashboard, consider dividing all your tiles into two (or more)
separate dashboards. Tiles offer a limited capacity and if you “feed” them with too much data (e.g. long lines of text),
it is possible the dashboard will get broken.

8 Chapter 3. Configuration

http://yaml.org
https://github.com/allegro/tipboard/blob/develop/tipboard/static/css/layout.css

Tipboard Documentation, Release 1.4.2

Setting tiles’ rotation

One of the most useful functions is defining tiles to rotate. In a single container (i.e. in one of the fields indicated
by col_X_of_Y and row_X_of_Y), you may define a few tiles to be displayed in this location as items rotating at
intervals defined in the configuration (similar to ads rotating on bus/tram stops, so-called citylights). To achieve that:

• add the flip-time-xx class to a container, where xx is rotation interval in seconds;

• add tile to the container.

The example below presents a container with two tiles (one of the empty type, the other of the text type) to rotate
every 2 seconds (flip-time-2). The rotation will start with the empty type tile:

layout:
- row_1_of_2:
- col_1_of_4 flip-time-2:

- tile_template: empty
tile_id: empty
title: Empty Tile 2

- tile_template: text
tile_id: text
title: Empty Tile

Sample layout

Let’s assume we want to define a layout as on the scheme below (i.e. a division into 2 equal rows, with the upper one
divided into 4 columns, and the lower one divided into 3 columns):

+-------+--------+--------+-------+
+-------+--+-----+----+---+-------+			
+----------+----------+-----------+

...its corresponding configuration file should look as follows (for brevity, I will present only the layout section,
skipping the tile_template, title_id, etc.):

layout:
row_1_of_2:

col_1_of_4:
col_1_of_4:
col_1_of_4:
col_1_of_4:

row_1_of_2:
col_1_of_3:
col_1_of_3:
col_1_of_3:

3.3. Customising tile layout 9

Tipboard Documentation, Release 1.4.2

Multiple dashboards per application’s instance

New in version 1.3.0.

It is possible to define multiple dashboards per application’s instance. In order to achieve that, you just create separate
layout config files (one per every dashboard) - having done that, your dashboards will be available at:

http://localhost:7272/<name_of_layout_config_file>

For example, having two layout config files my_first_dashboard.yaml and
my_second_dashboard.yaml, the corresponding dashboards can be accessed via:

http://localhost:7272/my_first_dashboard
http://localhost:7272/my_second_dashboard

Note: You have to strip the .yaml file extension when constructing your URLs.

When it comes to feeding those dashboards with data, the future data location is specified by tile IDs (unique within
application instance). Therefore, there is no need to specify different URLs for different dashboards - having tiles’
IDs, Tipboard will make sure that your data is delivered where it should be.

Multiple rotating dashboards

New in version 1.3.0.

If you have defined several dashboards (as described above), you may want to rotate (flip) them periodically. If you
are unsure what that means, think of extensions like Revolver (Chrome) or Tab Slideshow (Firefox).

To achieve that, you need:

• at least two dashboards (well, that’s kind of obvious)

• in the file settings-local.py add the variable FLIPBOARD_INTERVAL = <seconds> (e.g.
FLIPBOARD_INTERVAL = 5)

The above solution will make all your dashboards rotate - if you want to limit this behavior and rotate only certain
dashboards, just add another parameter FLIPBOARD_SEQUENCE which is just a list of dashboard names that should
be taken into account, e.g.:

FLIPBOARD_SEQUENCE = [’my_first_dashboard’, ’my_third_dashboard’]

Note: Every change in settings-local.py file requires restart of the application.

10 Chapter 3. Configuration

CHAPTER 4

Tiles

Every tile consists of an obligatory .html file and two optional .css and .js files. All three files belonging to
a tile should have the same name that corresponds with the tile name – e.g. with the pie_chart tile these are
pie_chart.html, pie_chart.css and pie_chart.js files respectively.

Customising tiles

If you want to modify a tile (e.g. change a CSS attribute, which obviously cannot be
done via API), copy a desired file in the folder of tiles delivered with the application (i.e.
<path_to_your_virtualenv>/lib/python2.7/site-packages/tipboard/tiles), paste it
in your tile folder (i.e. ~/.tipboard/custom_tiles) and edit according to your needs.

Files in your custom_tiles folder take precedence over those shipped by default with the application and thus
you can easily replace desired elements (e.g. if you want to change the text colour, just copy and edit the .css file –
without touching .html and .js files). We plan to introduce a command simplifying this process in the future.

Color palette

Color palette used by Tipboard’s tiles is defined as shown in the table below. To retain consistency, we strongly suggest
sticking to them while customising tiles.

Value Name
#000000 black
#FFFFFF white
#25282D tile_background
#DC5945 red
#FF9618 yellow
#94C140 green
#12B0C5 blue
#9C4274 violet
#EC663C orange
#54C5C0 naval

11

Tipboard Documentation, Release 1.4.2

Common elements

• tile’s content (data key) and its configuration (value key) should be send as two separate requests - once you
have established desired configuration it does not make much sense to send it over and over again;

• in order to reset tile’s config, you just send an empty value key (e.g. value = {}).

Library of available tiles

In the following pages we present a “library” of available tiles (i.e. those bundled with the application), which should
serve as a specification how to send data to them and how to set up its configuration options.

text

Description

Simple text-tile designated to display... (surprise!) text.

Content

12 Chapter 4. Tiles

Tipboard Documentation, Release 1.4.2

data = {"text": "<text_content>"}

where:

text_content
A textual content to be displayed.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=text"
-d "key=mytext"
-d ’data={"text": "Hello world!"}’

Configuration

value = {"<config_element>": "<config_value>"}

where:

config_element
One of three attributes of displayed text (i.e. font_size, color and font_weight).

config_value
Value matching above.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/mytext
-X POST
-d ’value={"font_color": "#00FF00"}’

Note: Parameter font_size can be specified in two ways - as a number (e.g. "font_size": 10) or as a
string (e.g. "font_size": "10px") - both of them have the same effect.

Keys font_size, color, font_weightwith empty config_value are ignored (in such case, they will inherit
those values from parent CSS).

4.4. Library of available tiles 13

Tipboard Documentation, Release 1.4.2

pie_chart

Description

“Pie-chart” style chart using jqPlot library, with optional legend.

Content

data = {
"title": "<optional_title>",
"pie_data": [[identifier1, value1], [identifier2, value2], ...]

}

where:

title
Chart’s title (optional).

pie_data
Data for pie-chart in a form of list of lists, where each sub-list is an identifier-value pair. Percentage of the whole
chart shared by given part is calculated automatically by jqPlot - relatively to the sum of values of all parts.

Example:

14 Chapter 4. Tiles

http://www.jqplot.com/

Tipboard Documentation, Release 1.4.2

curl http//localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=pie_chart"
-d "key=example_pie"
-d ’data={"title": "My title", "pie_data": [["Pie 1", 25], ["Pie 2", 25], ["Pie 3", 50]]}’

– this will result in a pie-chart with title “My title”, divided by three parts “Pie 1”, “Pie 2” and “Pie 3”.

Configuration

value = {<jqplot_config>}

where:

jqplot_config
Configuration params in the form described by jqPlot documentation.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tild_id>
-X POST
-d ’value={"title": true, "legend": {"show": true, "location": "s"}}’

– this will result in a pie-chart with legend turned on at the bottom of the tile (s stands for “south”) - its title will be
turned on as well.

line_chart

Description

Line-chart using jqPlot library. Allows to display arbitrary number of plots on single chart, with automatic generation
of trend lines for them (which is turned on by default).

Content

4.4. Library of available tiles 15

http://www.jqplot.com/tests/pie-donut-charts.php
http://www.jqplot.com/

Tipboard Documentation, Release 1.4.2

data = {
"subtitle": "<subtitle_text">,
"description": "<description_text>",
"series_list": [[<series1>], [<series2>], [<series3>], ...]

}

where:

subtitle, description
Additional text fields for charts descriptions (optional - you can pass empty strings here).

series_list
Data for line-charts in a form of list of series, where each series designates single chart; each element of a given
series is a pair [x_axis_value, y_axis_value].

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=line_chart"
-d "key=example_line"
-d ’data={"subtitle": "averages from last week",

"description": "Sales in our dept",
"series_list": [[["23.09", 8326], ["24.09", 260630], ["25.09", 240933], ["26.09", 229639], ["27.09", 190240], ["28.09", 125272], ["29.09", 3685]],

[["23.09", 3685], ["24.09", 125272], ["25.09", 190240], ["26.09", 229639], ["27.09", 240933], ["28.09", 260630], ["29.09", 108326]]]}’

– this will give two plots on a single chart (on x-axis there will be “23.09”, “24.09”, “25.09” and so on) with heading
“Sales in our dept” and subtitle “averages from last week”.

Configuration

value = {<jqplot_config>, simplify: <simplify_config>}

where:

jqplot_config
Configuration params in the form described by jqPlot documentation.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/example_line
-X POST
-d ’value={"grid": {"drawGridLines": true,

"gridLineColor": "#FFFFFF",
"shadow": false,
"background": "#000000",
"borderWidth": 0}}’

– this will set up the grid (in white color), black background and will turn off shadow effects as well as borders.

simplify_config

simplify_config = {
tolerancy: 10,
data_points_limit: 50, // we will TRY to achieve lower number of data points than this
max_simplifying_steps: 5,
simplify_step_multiplicator: 1.5
};

Each option is self-describing. This feature tries to optimize dataset to achieve points count lower than
data_points_limit. If simplify_config is not set, there won’t be any simplify process at all (you will just have your
raw data displayed).

16 Chapter 4. Tiles

http://www.jqplot.com/tests/line-charts.php

Tipboard Documentation, Release 1.4.2

curl -X POST http://127.0.0.1:7272/api/v0.1/dev_key/tileconfig/test_line
-d ’value={"simplify": {"tolerancy": 2}}’

Note: In case of displaying multiple plots on a single chart (e.g. for more than one data series) you have to keep in
mind that the x_axis_value values should be the same for all of those plots.

cumulative_flow

Description

Cumulative chart using jqPlot library. Allows to display up to seven plots on a single chart.

Content

data = {
"title": "<title>",
"series_list": [{"label": "<label1>", "series": [<val1>, <val2>, ...]},

{"label": "<label2>", "series": [<val1>, <val2>, ...]}]
}

where:

title
Title to be displayed above the labels.

series_list
A container (i.e. list of objects) for the data; each such object corresponding to a single plot consists of two
keys: label and series, where the latter is a list of values constructing the plot.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST

4.4. Library of available tiles 17

http://www.jqplot.com/

Tipboard Documentation, Release 1.4.2

-d "tile=cumulative_flow"
-d "key=<tile_id>"
-d ’data={"title": "My title:",

"series_list": [{"label": "label 1", "series": [0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 0, 0, 2, 0]},
{"label": "label 2", "series": [0, 5, 0, 0, 1, 0, 0, 3, 0, 0, 0, 7, 8, 9, 1]}]}’

Configuration

value = {"ticks": [[<key>, "<value>"], [<key>, "<value>"], ...]}

where:

ticks
List of elements defining x-axis; each such element is a list of form [k, v] where k is an ordinal number
designating position of such tick and v is a string which will be displayed in that place.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
-X POST
-d ’value={"ticks": [[1, "mon"], [2, "tue"], [3, "wed"], [4, "thu"], [5, "fri"], [6, "sat"], [7, "sun"]]}’

Note: If series_list contains more than one object (which is the case 99% of the time), each one of them should
have series list of the same length - and this length should be equal to the number of ticks.

18 Chapter 4. Tiles

Tipboard Documentation, Release 1.4.2

simple_percentage

Description

Tile displaying three arbitrary values (with labels) - one bigger (“main” value) and two smaller (at the bottom-left and
bottom-right of the tile). It is possible to change background color for the main value.

Content

data = {
"title": "<title>",
"subtitle": "<subtitle>",
"big_value": "<value1>",
"left_value": "<value2>",
"right_value": "<value3>"
"left_label": "<label1>",
"right_label": "<label2>"

}

where:

title, subtitle
They serve as a label for the big_value (“main” value).

big_value

4.4. Library of available tiles 19

Tipboard Documentation, Release 1.4.2

Main value, which treated as a string, so it can contain symbols like % etc.

left_value, right_value
Smaller, bottom-left and bottom-right values.

left_label, right_label
Labels for above values.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=simple_percentage"
-d "key=<tile_id>"
-d ’data={"title": "My title", "subtitle": "My subtitle", "big_value": "100%",

"left_value": "50%", "left_label": "smaller label 1",
"right_value": "25%", "right_label": "smaller label 2"}’

Configuration

value = {
"big_value_color": "<color>",
"fading_background": <BOOLEAN>

}

where:

big_value_color
Background color for big_value in a hexadecimal form or color name (e.g. #94C140 or green).

fading_background
Turns on/off background pulsation for big_value (may be useful for alerts etc.).

New in version 1.3.0.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
-X POST
-d ’value={"big_value_color": "green", "fading_background": true}’

20 Chapter 4. Tiles

Tipboard Documentation, Release 1.4.2

listing

Description

Very simple tile for displaying list of entries (up to seven) of arbitrary content. For more sophisticated needs there is a
fancy_listing tile.

Content

data = {"items": ["<entry1>", "<entry2>", ..., "<entry7>"]}

where:

items
List of items (entries) to display.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=listing"
-d "key=<tile_id>"
-d "data={"items": ["Leader: 5", "Product Owner: 0", "Scrum Master: 3", "Developer: 0"]}"

Configuration

4.4. Library of available tiles 21

Tipboard Documentation, Release 1.4.2

This tile does not offer any configuration options.

bar_chart

Description

Tile displaying data in the form of horizontal bar charts. Each cart may consist of one or more series of data - in the
latter case, such bars are grouped respectively. There are no “hard” limits when it comes to the number of charts/series,
although we suggest to keep them down to 3 charts of 2 series each.

Content

data = {
"title": "<title>",
"subtitle": "<subtitle>",
"ticks": ["<label1>", "<label2>", "<label3>" ...],
"series_list": [[<val1>, <val2>, <val3>, ...],

[<val1>, <val2>, <val3>, ...]]
}

where:

22 Chapter 4. Tiles

Tipboard Documentation, Release 1.4.2

title, subtitle
Title and subtitle displayed on the top of the tile.

ticks
Labels to be displayed on the left side of the charts.

series_list
List of series, as name suggests. [[1, 2]] will give one chart of two bars, [[3, 4, 5], [6, 7, 8]]
will give two charts of three bars each.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=bar_chart"
-d "key=<tile_id>"
-d ’data={"title": "The A-Team",

"subtitle": "Velocity (Last tree sprints)",
"ticks": ["n-2", "n-1", "Last (n)"],
"series_list": [[49, 50, 35], [13, 45, 9]]}’

Configuration

This tile does not offer any configuration options.

Note: In case of displaying more than one charts on the same tile, the number of values in series_list for every
chart should be the same (and they should be equal to the number of ticks.

4.4. Library of available tiles 23

Tipboard Documentation, Release 1.4.2

fancy_listing

Description

This tile is a more sophisticated version of listing tile offering colored labels and centering options. Each entry is
an object containing three keys: label, text and description. Therefore, data (i.e. content) is just a list of
such objects.

Content

"data" = [
{"label": "<label1>", "text": "<entry1>", "description": "<desc1>" },
{"label": "<label2>", "text": "<entry2>", "description": "<desc2>" }

]

where:

label
Smaller label displayed on the left which can be colored.

text
A textual entry to be displayed next to the label.

description
Subtitle displayed below text element.

24 Chapter 4. Tiles

Tipboard Documentation, Release 1.4.2

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=fancy_listing"
-d "key=<tile_id>"
-d ’data=[{"label": "My label 1", "text": "Lorem ipsum", "description": "such description" },

{"label": "My label 2", "text": "Dolor sit", "description": "yet another" },
{"label": "My label 3", "text": "Amet", "description": "" }]’

Configuration

value = {
"vertical_center": <BOOLEAN>,
"<position>": {

"label_color": "<color>",
"center": <BOOLEAN>

},
}

where:

vertical_center
Centers vertically all the entries (along with their labels).

New in version 1.3.0.

position
Tells which entry (starting from 1) should be a subject to label_color and center (specified as subkeys
of position).

label_color
Sets the color of label for the entry given with position. Color can be specified in a hexadecimal form
(#RRGGBB) or by name (e.g. green).

center
Centers horizontally entry’s text and description (it does not affect label’s position).

New in version 1.3.0.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
-X POST
-d ’value={"vertical_center": true,

"1": {"label_color": "red", "center": true},
"3": {"label_color": "green", "center": true }}’

4.4. Library of available tiles 25

Tipboard Documentation, Release 1.4.2

big_value

Description

This is a variation of simple_percentage tile. It has slightly different footer (four possible values instead of just
two; values are displayed on the right side of the label instead of below), and the main value (big_value) is little
bit bigger.

Content

data = {
"title": "<title>",
"description": "<description>",
"big-value": "<value>",
"upper-left-label": "<label>",
"upper-left-value": "<value>",
"lower-left-label": "<label>",
"lower-left-value": "<value>",
"upper-right-label": "<label>",
"upper-right-value": "<value>",
"lower-right-label": "<label>",
"lower-right-value": "<value>"

}

26 Chapter 4. Tiles

Tipboard Documentation, Release 1.4.2

where:

title, description
Title and description (subtitle) for the tile.

big_value
Main value, which treated as a string, so it can contain symbols like % etc.

upper-left-value, lower-left-value, upper-right-value, lower-right-value
Smaller, bottom-left and bottom-right values.

upper-left-label, lower-left-label, upper-right-label, lower-right-label
Labels for above values.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=big_value"
-d "key=<tile_id>"
-d ’data={"title": "Tickets",

"description": "number of blockers",
"big-value": "314",
"upper-left-label": "critical:",
"upper-left-value": "1020",
"lower-left-label": "major:",
"lower-left-value": "8609",
"upper-right-label": "minor:",
"upper-right-value": "7532",
"lower-right-label": "all:",
"lower-right-value": "19 853"}’

Configuration

value = {
"big_value_color": "<color>",
"fading_background": <BOOLEAN>

}

where:

big_value_color
Background color for big_value in a hexadecimal form or color name (e.g. #94C140 or green).

fading_background
Turns on/off background pulsation for big_value (may be useful for alerts etc.).

New in version 1.3.0.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
-X POST
-d ’value={"big_value_color": "green", "fading_background": true}’

4.4. Library of available tiles 27

Tipboard Documentation, Release 1.4.2

just_value

Description

Tile for displaying single, short information with a possibility to change its background color.

Content

"data" = {
"title": "<title>",
"description": "<description>",
"just-value": "<value>"

}

where:

title, description
Title and description (subtitle) for the tile.

just-value
Value to be displayed on the tile, with optionally colored background.

Example:

28 Chapter 4. Tiles

Tipboard Documentation, Release 1.4.2

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=just_value"
-d "key=<tile_id>"
-d ’data={"title": "Next release:", "description": "(days remaining)", "just-value": "23"}’

Configuration

value = {
"just-value-color": "<color>",
"fading_background": <BOOLEAN>

}

where:

just-value-color
Background color for just-value in a hexadecimal form or color name (e.g. #94C140 or green).

fading_background
Turns on/off background pulsation for just-value (may be useful for alerts etc.).

New in version 1.3.0.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
-X POST
-d ’value={"just-value-color": "green", "fading_background": true}’

advanced_plot

Description

This tile is for more demanding users. It basically allows to display arbitrary type of chart/plot from the jqPlot library,
along with the title and description (both are optional).

Before you start experimenting with jqPlot library, we suggest to familiarize yourself with this manual. After that you
should check out options tutorial and options summary.

Here you will find some examples.

Content

4.4. Library of available tiles 29

http://www.jqplot.com/
http://www.jqplot.com/docs/files/usage-txt.html#jqPlot_Usage
http://www.jqplot.com/docs/files/optionsTutorial-txt.html#Options_Tutorial
http://www.jqplot.com/docs/files/jqplot-core-js.html
http://www.jqplot.com/deploy/dist/examples/

Tipboard Documentation, Release 1.4.2

"data" = {
"title": "<tile>",
"description": "<description>",
"plotData": "<data>"

}

where:

title, description
Title and description (subtitle) for the tile.

plotData
Data that will be fed directly to your plot. Its form depends on the specific type of plot that you are going to use
- see jqPlot’s documentation for the details.

Example (using horizontal Bar Chart - third example from the top):

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=advanced_plot"
-d "key=<tile_id>"
-d ’data={"title": "Metric Tons per Year", "description": "",

"plotData": [[[2,1], [4,2], [6,3], [3,4]],
[[5,1], [1,2], [3,3], [4,4]],
[[4,1], [7,2], [1,3], [2,4]]]}’

Note: Keep in mind that advanced_plot can display arbitrary charts from jqPlot library, and more than often they
are quite different when it comes to the parameters required etc.

Configuration

value = {
"value": "<jqplot_config>"

}

where:

value
Raw configuration that will be passed directly to jqPlot and which should obey the rules defined by the
jqPlot library. Internally, this config will be passed as $.jqplot(some-container, some-data,
our-config).

If such configuration contains one of jqPlot’s renderers, its name should be passed as a string, according to the
table below:

30 Chapter 4. Tiles

http://www.jqplot.com/deploy/dist/examples/barTest.html

Tipboard Documentation, Release 1.4.2

jqPlot’s renderer string to send
$.jqplot.BarRenderer "BarRenderer"
$.jqplot.BlockRenderer "BlockRenderer"
$.jqplot.BubbleRenderer "BubbleRenderer"
$.jqplot.CanvasAxisLabelRenderer "CanvasAxisLabelRenderer"
$.jqplot.CanvasAxisTickRenderer "CanvasAxisTickRenderer"
$.jqplot.CanvasTextRenderer "CanvasTextRenderer"
$.jqplot.CategoryAxisRenderer "CategoryAxisRenderer"
$.jqplot.DateAxisRenderer "DateAxisRenderer"
$.jqplot.DonutRenderer "DonutRenderer"
$.jqplot.EnhancedLegendRenderer "EnhancedLegendRenderer"
$.jqplot.FunnelRenderer "FunnelRenderer"
$.jqplot.LogAxisRenderer "LogAxisRenderer"
$.jqplot.MekkoAxisRenderer "MekkoAxisRenderer"
$.jqplot.MekkoRenderer "MekkoRenderer"
$.jqplot.MeterGaugeRenderer "MeterGaugeRenderer"
$.jqplot.OhlcRenderer "OhlcRenderer"
$.jqplot.PieRenderer "PieRenderer"
$.jqplot.PyramidAxisRenderer "PyramidAxisRenderer"
$.jqplot.PyramidGridRenderer "PyramidGridRenderer"
$.jqplot.PyramidRenderer "PyramidRenderer"

Example (using horizontal Bar Chart - third example from the top):

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
-X POST
-d ’value={

"seriesDefaults": {
"trendline": {"show": false},
"renderer":"BarRenderer",
"pointLabels": {"show": true, "location": "e", "edgeTolerance": -15},
"shadowAngle": 135,
"rendererOptions": {"barDirection": "horizontal"}

},
"axes": {"yaxis": { "renderer": "CategoryAxisRenderer"}}}’

4.4. Library of available tiles 31

http://www.jqplot.com/deploy/dist/examples/barTest.html

Tipboard Documentation, Release 1.4.2

norm_chart

New in version 1.3.0.

Description

“Curve vs norm” style chart. Suitable for situations, when you want to compare some data with expected value
(“norm”) or put an emphasis on y-axis values.

Content

"data" = {
"title": "<title>",
"description": "<description>",
"plot_data": [[<series1>], [<series2>], [<series3>], ...]

}

where:

title, description
Title and description (subtitle) for the tile.

plot_data
Data for charts in a form of list of series, where each series designates single chart; each element of a given
series is a pair [x_axis_value, y_axis_value].

32 Chapter 4. Tiles

Tipboard Documentation, Release 1.4.2

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
-X POST
-d "tile=norm_chart"
-d "key=<tile_id>"
-d ’data={"title": "My title",

"description": "Some description",
"plot_data": [[[1, 2], [3, 5.12], [5, 13.1], [7, 33.6], [9, 85.9], [11, 219.9]],

[[6, 2], [3, 5.12], [5, 13.1], [7, 33.6], [9, 85.9], [11, 219.9]]]}’

Configuration

value = {
"easyNorms": [["<color>", <y-value>, <line_width>], ...]

}

where:

easyNorms
List of norms to be displayed. Each norm consists of three elements:

color
Color which given norm should use - in a hexadecimal form or color name (e.g. #94C140 or green).

y-value
Value for the norm.

line_width
Line thickness for the norm (in pixels).

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
-X POST
-d ’value={"easyNorms": [["yellow", 200, 2], ["green", 100, 2]]}’

Note: In order to keep brevity, all examples presented in specifications above do not include any escape characters.
Therefore, it’s up to you to insert them where necessary.

And also, remember to set all the elements in angle brackets (e.g. <api_key>, <tile_id> etc.) to reflect your
configuration.

4.4. Library of available tiles 33

Tipboard Documentation, Release 1.4.2

34 Chapter 4. Tiles

CHAPTER 5

API

One of the advantages of Tipboard is flexibility in feeding tiles with data. We achieve that by providing a simple,
REST API - that way, your feeding scripts may be written in any language (Python, Ruby, Bash, Perl, PHP - you name
it). The only limitation is the format of input data accepted by a given tile type (see Library of available tiles for the
details).

To experiment with resources specified below you can use tools like Advanced REST Client (Chrome extension), or
cURL, if you prefer working from command line. For Python programmers, there’s an excellent Requests library,
which we strongly recommend.

API key

To send anything to your tiles, first you have to get your API key. This unique key is generated for you automatically
during Tipboard’s installation and may be read in the ~/.tipboard/settings-local.py file - it is a sequence
of characters starting with API_KEY, e.g.:

API_KEY = ’e2c3275d0e1a4bc0da360dd225d74a43’

If you can’t see any such string, just add the key manually (it doesn’t have to be as long and hard to memorise as the
one above, though).

Note: Every change in settings-local.py file requires restart of the application.

Available resources

Current API version: v0.1

Note: In 99% of cases, probably only push and tileconfig will be of interest to you (and maybe tiledata
too).

POST /api/(api_version)/
api_key/push Feeds tiles with data. Input data should be provided in the format that complies with the one
used in a desired tile. Note: a tile to which data will be sent is defined by the key included in the data sent rather
than by tile_id as in cases below.

Parameters

• api_version – version of API to be used

35

http://chromerestclient.appspot.com/
http://curl.haxx.se/
http://docs.python-requests.org/en/latest/

Tipboard Documentation, Release 1.4.2

• api_key – your API key

Example request:

POST /api/v0.1/my_key/push
Host: localhost:7272
POST data: tile=text key=id_1 data={"text": "Hello world!"}

Example response:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

Tile’s data pushed successfully.

POST /api/(api_version)/
api_key/tileconfig/tile_id Configures tile specified by tile_id. The configuration should comply with the
specification of a given tile type.

Parameters

• api_version – version of API to be used

• api_key – your API key

• tile_id – unique tile’s ID from your layout_config.yaml file

Example request:

GET /api/v0.1/my_key/tileconfig/id_1
Host: localhost:7272
POST data: value={"font_color": "#00FF00"}

Example response:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

Tile’s config updated.

DELETE /api/(api_version)/
api_key/tileconfig/tile_id Resets configuration of the tile specified by tile_id.

Parameters

• api_version – version of API to be used

• api_key – your API key

• tile_id – unique tile’s ID from your layout_config.yaml file

Example request:

DELETE /api/v0.1/my_key/tileconfig/id_1
Host: localhost:7272

Example response:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

Tile’s config deleted.

36 Chapter 5. API

Tipboard Documentation, Release 1.4.2

GET /api/(api_version)/
api_key/tiledata/tile_id Retrieves data belonging to the tile specified by tile_id. May be useful in cases
when you need to re-fetch some parts of your data (e.g. when updating your team’s stats) or just for diagnostics.

Parameters

• api_version – version of API to be used

• api_key – your API key

• tile_id – unique tile’s ID from your layout_config.yaml file

Example request:

GET /api/v0.1/my_key/tiledata/id_1
Host: localhost:7272

Example response:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

{
"tile_template": "text",
"meta": {

"font_color": "#ff9618",
"font_size": "45px"

},
"data": {

"text": "Lorem ipsum."
},
"id": "id_1"

}

DELETE /api/(api_version)/
api_key/tiledata/tile_id Removes everything belonging to the tile given by tile_id from Redis.

Parameters

• api_version – version of API to be used

• api_key – your API key

• tile_id – unique tile’s ID from your layout_config.yaml file

Example request:

DELETE /api/v0.1/my_key/tiledata/id_1
Host: localhost:7272

Example response:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

Tile’s data deleted.

GET /api/(api_version)/
api_key/info Provides information on project and user configuration. This resource has been created for
debugging purposes.

Parameters

• api_version – version of API to be used

5.2. Available resources 37

Tipboard Documentation, Release 1.4.2

• api_key – your API key

Example request:

GET /api/v0.1/my_key/info
Host: localhost:7272

Example response:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

{
"tipboard_version": "1.3.0",
"project_layout_config": "/home/pylabs/.tipboard/layout_config.yaml",
"redis_db": {

"host": "localhost",
"db": 4,
"port": 6379

},
"project_name": "pylabs"

}

38 Chapter 5. API

CHAPTER 6

Extras

Here you will find description of components which are not a part of the Tipboard project per se, although they may
be useful to some of its users. Assuming standard installation, you can find them here:

<path_to_your_virtualenv>/lib/python2.7/site-packages/tipboard/extras

Note: If you have developed something of similar nature and you are willing to share it, we encourage you to make a
pull request to our repo. Thanks!

jira-ds.py

Script for fetching frequently used data from JIRA issue tracker, in order to present it on your dashboards. Returns
requested data to stdout in JSON format. For the list of available options see jira-ds.py --help.

This script is basically a wrapper around jira-ds.js, so those two files shouldn’t be separated. Requires CasperJS
and PhantomJS installed somewhere in your path (we suggest using npm for that).

Before you start using them, remember to fill in JIRA_CREDENTIALS and JIRA_BASE_URL (in jira-ds.py)
as well as url_jira and url_jira_login (in jira-ds.js) with the your JIRA credentials, location of your
JIRA instance and its login page.

Tested with JIRA 6.1.x.

client_code_example.py

Simple Python script targeted to novice users serving as an example how to glue together three steps: fetching data,
processing it and then sending it to the tile. See comments in the source code for further explanation.

fabfile.py

Script for quick, automated installations on remote machines.

You need to have fabric and fabtools to use remote install script.

Run:

39

https://www.atlassian.com/software/jira
http://casperjs.org/
http://phantomjs.org/
http://nodejs.org/
https://github.com/ronnix/fabtools
http://fabtools.readthedocs.org

Tipboard Documentation, Release 1.4.2

fab -H root@host install

– it will install all needed .deb packages, create virualenv and set up Tipboard service using master branch from our
main repo.

40 Chapter 6. Extras

CHAPTER 7

Change Log

1.4.1

Released on November 16, 2016.

• Fixes for tiles: ‘advanced_plot’, ‘simple_percentage’ and ‘text-tile’.

• Fix for tile keys cache.

• Added support for RequireJS.

• Make use of simplify.js to make charts (in e.g. ‘line_chart’ tile) more readable.

• Fix for ‘Target dimension not set’ error when layout ‘row_1_of_1’ is used.

• Minor fixes, improvements, cleanups etc.

1.4.0

Released on August 28, 2014.

• Tipboard got open-sourced!

1.3.1

Released on July 23, 2014.

• Added extensive documentation.

• Numerous fixes in ‘jira-ds’ script (e.g added timeouts).

• Fixed definitions of colors available for tiles.

• Fixed checking for expired data (+ made it timezone aware).

• Added integration with Travis.

• Changed default size of the log files.

41

Tipboard Documentation, Release 1.4.2

1.3.0

Released on February 17, 2014.

New features:

• Fading highlighter (for just_value, big_value and simple_percentage tiles).

• Fancy centering options for fancy_listing tile.

• Notifications on data expiration.

• New tile: norm_chart.

• Possibility to define more than one dashboard per application instance.

Bug fixes:

• Tiles no longer vanish when flipping is enabled.

• Characters like ‘.’ or ‘-‘ (and some others) in tiles’ ids are no longer causing problems.

• Renderer names (like OHLCRenderer, MarkerRenderer, ShadowRenderer and ShapeRenderer) can now safely
be passed to tiles’ configs.

Others:

• Error messages displayed on tiles got more emphasis.

• Renderer names (in tiles’ configs) are now case insensitive.

• Added frontend tests and selector for tests.

1.2.0

Released on December 19, 2013.

This release brings new features and some minor bugfixes.

• New tiles: big_value, just_value, advanced_plot.

• Rewritten ‘jira-ds’ script with some new options (e.g. ‘maxResults’ for JQL).

• Completely new graphic theme - with new colors, fonts etc.

• Fixed existing tests and some new added.

• Exceptions raised by JavaScript are now displayed on the tiles.

• Improved config handling for bar_chart, pie_chart and line_chart.

• Added possibility to specify specialized renderers for almost all plots (except cumulative_flow).

1.1.0

Released on November 20, 2013.

This release contains multiple improvements and bugfixes:

• Tiles are no longer packages (i.e. folders).

• Reorganized files/folders structure.

42 Chapter 7. Change Log

Tipboard Documentation, Release 1.4.2

• Massively reduced app’s settings.

• Simplified layout config (no more classes, only one keyword needed to get tile flips working).

• New tiles: bar_chart, fancy_listing.

• Improved scaling of tiles + some cosmetic changes.

• Unique API key is generated automatically for every project.

• Fabric script for administrative installs

1.0.0

Released on November 06, 2013.

This is the first release of Tipboard.

• initial release

7.7. 1.0.0 43

Tipboard Documentation, Release 1.4.2

44 Chapter 7. Change Log

CHAPTER 8

License

Copyright 2013-2015 Allegro Group

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

45

Tipboard Documentation, Release 1.4.2

46 Chapter 8. License

HTTP Routing Table

/api
GET /api/(api_version)/(api_key)/info,

37
GET /api/(api_version)/(api_key)/tiledata/(tile_id),

36
POST /api/(api_version)/(api_key)/push,

35
POST /api/(api_version)/(api_key)/tileconfig/(tile_id),

36
DELETE /api/(api_version)/(api_key)/tileconfig/(tile_id),

36
DELETE /api/(api_version)/(api_key)/tiledata/(tile_id),

37

47

	Overview
	Project assumptions

	How to install
	Prerequisites
	Preparing environment for installation
	Installing with pip
	Verification

	Configuration
	Default configuration
	Launching Tipboard app
	Customising tile layout

	Tiles
	Customising tiles
	Color palette
	Common elements
	Library of available tiles

	API
	API key
	Available resources

	Extras
	jira-ds.py
	client_code_example.py
	fabfile.py

	Change Log
	1.4.1
	1.4.0
	1.3.1
	1.3.0
	1.2.0
	1.1.0
	1.0.0

	License
	HTTP Routing Table

