

 Navigation

 	
 next

 	Tipboard 1.4.0 documentation

Welcome to Tipboard’s documentation!

Contents:

	Overview
	Project assumptions

	How to install
	Prerequisites

	Preparing environment for installation

	Installing with pip

	Verification

	Configuration
	Default configuration

	Launching Tipboard app

	Customising tile layout

	Tiles
	Customising tiles

	Color palette

	Common elements

	Library of available tiles

	API
	API key

	Available resources

	Extras
	jira-ds.py

	client_code_example.py

	fabfile.py

	Change Log
	1.4.0

	1.3.1

	1.3.0

	1.2.0

	1.1.0

	1.0.0

	License

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

Overview

Tipboard is a system for creating dashboards, written in JavaScript and Python.
Its widgets (‘tiles’ in Tipboard’s terminology) are completely separated from
data sources, which provides great flexibility and relatively high degree of
possible customizations.

Because of its intended target (displaying various data and statistics in your
office), it is optimized for larger screens.

Similar projects: Geckoboard [http://www.geckoboard.com/],
Dashing [http://shopify.github.io/dashing/].

Project assumptions

	Defining a dashboard layout (number of lines, columns, types of tiles etc.).

	Clear separation between tiles and data sources.

	Ability to create own tiles and scripts querying data sources (e.g. Jira, Bamboo, Confluence etc.).

	Feeding tiles via REST API.

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

How to install

You can install Tipboard on a variety of sensible operating systems. This guide
assumes Ubuntu Server 12.04 LTS and presents shell command examples
accordingly.

Prerequisites

Tipboard requires Python 2.7 which can be installed with this command:

$ sudo apt-get install python-dev python-virtualenv

Another dependency which needs to be satisfied before proceeding further is
Redis [http://redis.io/] server:

$ sudo apt-get install redis-server

Optional yet recommended packages

One of such packages is supervisor - it facilitates program administration
(e.g. its reboot), especially if there are a few instances launched on the
machine.

Based on the Tornado framework, Tipboard has a built-in server available, but
a typical use case assumes communication with the world via reverse proxy (e.g.
using nginx or apache).

Note

Although configuration of reverse proxy is out of scope of this manual, we
would like to emphasise that Tipboard use Web Sockets – a relatively new
mechanism – and thus you should ensure a server in a version that will
support it (e.g. nginx >= 1.3.13 or apache2 >= 2.4.6). By default
Ubuntu 12.04 offers older versions – you may then use backports.

Note

It will be useful to have an updated version of pip (i.e. >= 1.4) and
virtualenv (i.e. >= 1.10).

Preparing environment for installation

Start by creating a user, the privileges of whom will be used by the
application (for the needs of this manual, let’s create the user “pylabs”):

$ sudo adduser pylabs --home /home/pylabs --shell /bin/bash
$ sudo su - pylabs

Virtual environment

Continue by creating a virtual environment that will help you conveniently
separate your instance from what you already have installed in the system
(let’s say we name it “tb-env”):

$ cd /home/pylabs
$ virtualenv tb-env

Activate the created virtual environment with the following command:

$ source /home/pylabs/tb-env/bin/activate

Note

It is worth saving the above line in the ~/.profile file. As a result,
the virtual environment will be activated automatically whenever you log in
on the machine.

Note

Further setup assumes an activated virtual environment, which is denoted by
(tb-env) prefix in your shell prompt.

Installing with pip

After creating and activating virtualenv, install the latest (current) version
of Tipboard package available on pypi (“Python Package Index”) with the
following command:

(tb-env)$ pip install tipboard

Verification

To verify if installation has been successful, launch this command:

(tb-env)$ tipboard runserver

If you see the message “Listening on port...” instead of errors, it means that
installation was successful and you may proceed to the next section.

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

Configuration

The description below assumes that you have installed Tipboard correctly and
use a default configuration that is the starting point for steps presented
below (see section How to install).

Default configuration

Tipboard launched after installation present a basic, empty layout – empty
tiles in 2 lines with 4 columns each. If you want to modify them, create a
“clean” config, where your changes will be introduced. Use the command:

(tb-env)$ tipboard create_project <name_of_project>

It will create the ~/.tipboard dir with the following content:

	settings-local.yaml file that defines the layout of tiles on the
dashboard you are creating;

	settings-local.py file in which you can overwrite default (global)
application settings; a description of options and their default values has
been presented in this file [https://github.com/allegro/tipboard/blob/develop/tipboard/settings.py];

	custom_tiles subdir to place your own tiles.

Note

Before you send anything to your tiles, you have to get your API key
first, which is described in the API key section.

Launching Tipboard app

After you have logged in to your machine, you may launch Tipboard with the
command:

(tb-env)$ tipboard runserver [<host>] [<port>]

...where host and port parameters are optional (by default these are
localhost and 7272; if you want the application to listen on all the
network interfaces, set host to 0.0.0.0).

Customising tile layout

As mentioned previously, the layout of tiles in a dashboard is defined by
layout_config.yaml file. The file is in the YAML [http://yaml.org]
format, the description of which is beyond the scope of this manual. However,
it is worth indicating that YAML has certain format requirements –
indentation should have a unified structure (be a multiplication of a
number, e.g. 4), when creating indentations spaces should not be mixed with
tabs.

Below you can find a list of options that can be saved in the file.
Indentations indicate the position of a given option in the configuration (e.g.
details are superior to page_title).

details
 page_tile
layout
 row_X_of_Y
 col_X_of_Y
 tile_template
 tile_id
 tile
 timeout

where:

	
details

	A section that contains additional configuration parameters; for the time
being it is only ‘page_title’; depending on his needs, the users add other
elements.

	
page_tile

	A section that defines the title of a page to appear in the web browser
after entering the dashboard.

	
layout

	A section that contains a proper configuration of the tile layout.

	
row_X_of_Y

	Defines a row hight; a sum of Xs should equal Y.

	
col_X_of_Y

	Similar to above but concerns a column width in a given row.

	
tile_template

	The name of a tile template to be displayed (e.g. pie_chart,
line_chart, cumulative_flow)

	
tile_id

	A tile identifier in a HTML document and key identifier in Redis.

	
title

	A title to be displayed in the upper part of the tile.

	
timeout

	The length (in seconds) of data life (if data is not sent during this time,
you will be informed that the data is stalled). Since interval used by the
application to check for those timeouts is 5 seconds, it doesn’t make sense
to set this value smaller than this.

New in version 1.3.0.

The method of using row_X_of_Y and col_X_of_Y has been presented in the
examples below. If you want to see how it’s done “from the kitchen”, and you
have some basic knowledge of CSS styling, have a look here [https://github.com/allegro/tipboard/blob/develop/tipboard/static/css/layout.css];

Note

If you want to present a lot of data on your dashboard, consider dividing
all your tiles into two (or more) separate dashboards. Tiles offer a limited
capacity and if you “feed” them with too much data (e.g. long lines of
text), it is possible the dashboard will get broken.

Setting tiles’ rotation

One of the most useful functions is defining tiles to rotate. In a single
container (i.e. in one of the fields indicated by col_X_of_Y and
row_X_of_Y), you may define a few tiles to be displayed in this location as
items rotating at intervals defined in the configuration (similar to ads
rotating on bus/tram stops, so-called citylights). To achieve that:

	add the flip-time-xx class to a container, where xx is rotation
interval in seconds;

	add tile to the container.

The example below presents a container with two tiles (one of the empty type,
the other of the text type) to rotate every 2 seconds (flip-time-2).
The rotation will start with the empty type tile:

layout:
 - row_1_of_2:
 - col_1_of_4 flip-time-2:
 - tile_template: empty
 tile_id: empty
 title: Empty Tile 2

 - tile_template: text
 tile_id: text
 title: Empty Tile

Sample layout

Let’s assume we want to define a layout as on the scheme below (i.e. a division
into 2 equal rows, with the upper one divided into 4 columns, and the lower one
divided into 3 columns):

+-------+--------+--------+-------+
+-------+--+-----+----+---+-------+			
+----------+----------+-----------+

...its corresponding configuration file should look as follows (for brevity, I
will present only the layout section, skipping the tile_template,
title_id, etc.):

layout:
 row_1_of_2:
 col_1_of_4:
 col_1_of_4:
 col_1_of_4:
 col_1_of_4:
 row_1_of_2:
 col_1_of_3:
 col_1_of_3:
 col_1_of_3:

Multiple dashboards per application’s instance

New in version 1.3.0.

It is possible to define multiple dashboards per application’s instance. In
order to achieve that, you just create separate layout config files (one per
every dashboard) - having done that, your dashboards will be available at:

http://localhost:7272/<name_of_layout_config_file>

For example, having two layout config files my_first_dashboard.yaml and
my_second_dashboard.yaml, the corresponding dashboards can be accessed
via:

http://localhost:7272/my_first_dashboard
http://localhost:7272/my_second_dashboard

Note

You have to strip the .yaml file extension when constructing your URLs.

When it comes to feeding those dashboards with data, the future data location
is specified by tile IDs (unique within application instance). Therefore, there
is no need to specify different URLs for different dashboards - having tiles’
IDs, Tipboard will make sure that your data is delivered where it should be.

Multiple rotating dashboards

New in version 1.3.0.

If you have defined several dashboards (as described above), you may want to
rotate (flip) them periodically. If you are unsure what that means, think of
extensions like Revolver (Chrome) or Tab Slideshow (Firefox).

To achieve that, you need:

	at least two dashboards (well, that’s kind of obvious)

	in the file settings-local.py add the variable FLIPBOARD_INTERVAL =
<seconds> (e.g. FLIPBOARD_INTERVAL = 5)

The above solution will make all your dashboards rotate - if you want to limit
this behavior and rotate only certain dashboards, just add another parameter
FLIPBOARD_SEQUENCE which is just a list of dashboard names that should be
taken into account, e.g.:

FLIPBOARD_SEQUENCE = ['my_first_dashboard', 'my_third_dashboard']

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

Tiles

Every tile consists of an obligatory .html file and two optional .css
and .js files. All three files belonging to a tile should have the same
name that corresponds with the tile name – e.g. with the pie_chart tile
these are pie_chart.html, pie_chart.css and pie_chart.js files
respectively.

Customising tiles

If you want to modify a tile (e.g. change a CSS attribute, which obviously
cannot be done via API), copy a desired file in the folder of tiles delivered
with the application (i.e.
<path_to_your_virtualenv>/lib/python2.7/site-packages/tipboard/tiles),
paste it in your tile folder (i.e. ~/.tipboard/custom_tiles) and edit
according to your needs.

Files in your custom_tiles folder take precedence over those shipped by
default with the application and thus you can easily replace desired elements
(e.g. if you want to change the text colour, just copy and edit the .css
file – without touching .html and .js files). We plan to introduce a
command simplifying this process in the future.

Color palette

Color palette used by Tipboard’s tiles is defined as shown in the table below.
To retain consistency, we strongly suggest sticking to them while customising
tiles.

	Value
	Name

	#000000
	black

	#FFFFFF
	white

	#25282D
	tile_background

	#DC5945
	red

	#FF9618
	yellow

	#94C140
	green

	#12B0C5
	blue

	#9C4274
	violet

	#EC663C
	orange

	#54C5C0
	naval

Common elements

	tile’s content (data key) and its configuration (value key) should be
send as two separate requests - once you have established desired
configuration it does not make much sense to send it over and over again;

	in order to reset tile’s config, you just send an empty value key (e.g.
value = {}).

Library of available tiles

In the following pages we present a “library” of available tiles (i.e. those
bundled with the application), which should serve as a specification how to
send data to them and how to set up its configuration options.

	text

	pie_chart

	line_chart

	cumulative_flow

	simple_percentage

	listing

	bar_chart

	fancy_listing

	big_value

	just_value

	advanced_plot

	norm_chart

Note

In order to keep brevity, all examples presented in specifications above do
not include any escape characters. Therefore, it’s up to you to insert them
where necessary.

And also, remember to set all the elements in angle brackets (e.g.
<api_key>, <tile_id> etc.) to reflect your configuration.

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

text

[image: _images/text.png]
Description

Simple text-tile designated to display... (surprise!) text.

Content

data = {"text": "<text_content>"}

where:

	
text_content

	A textual content to be displayed.

Example:

curl http://localhot:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=text"
 -d "key=mytext"
 -d 'data={"text": "Hello world!"}'

Configuration

value = {"<config_element>": "<config_value>"}

where:

	
config_element

	One of three attributes of displayed text (i.e. font_size, color and
font_weight).

	
config_value

	Value matching above.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/mytext
 -X POST
 -d 'value={"font_color": "#00FF00"}'

Note

Parameter font_size can be specified in two ways - as a number (e.g.
"font_size": 10) or as a string (e.g. "font_size": "10px") - both of
them have the same effect.

Keys font_size, color, font_weight with empty config_value
are ignored (in such case, they will inherit those values from parent CSS).

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

pie_chart

[image: _images/pie-chart.png]
Description

“Pie-chart” style chart using jqPlot [http://www.jqplot.com/] library, with
optional legend.

Content

data = {
 "title": "<optional_title>",
 "pie_data": [[identifier1, value1], [identifier2, value2], ...]
}

where:

	
title

	Chart’s title (optional).

	
pie_data

	Data for pie-chart in a form of list of lists, where each sub-list is an
identifier-value pair. Percentage of the whole chart shared by given part is
calculated automatically by jqPlot - relatively to the sum of values of all
parts.

Example:

curl http//localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=pie_chart"
 -d "key=example_pie"
 -d 'data={"title": "My title", "pie_data": [["Pie 1", 25], ["Pie 2", 25], ["Pie 3", 50]]}'

– this will result in a pie-chart with title “My title”, divided by three
parts “Pie 1”, “Pie 2” and “Pie 3”.

Configuration

value = {<jqplot_config>}

where:

	
jqplot_config

	Configuration params in the form described by jqPlot documentation [http://www.jqplot.com/tests/pie-donut-charts.php].

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tild_id>
 -X POST
 -d 'value={"title": true, "legend": {"show": true, "location": "s"}}'

– this will result in a pie-chart with legend turned on at the bottom of the tile (s stands for “south”) - its title will be turned on as well.

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

line_chart

[image: _images/line-chart.png]
Description

Line-chart using jqPlot [http://www.jqplot.com/] library. Allows to display
arbitrary number of plots on single chart, with automatical generation of trend
lines for them (which is turned on by default).

Content

data = {
 "subtitle": "<subtitle_text">,
 "description": "<description_text>",
 "series_list": [[<series1>], [<series2>], [<series3>], ...]
}

where:

	
subtitle, description

	Additional text fields for charts descriptions (optional - you can pass
empty strings here).

	
series_list

	Data for line-charts in a form of list of series, where each series
designates single chart; each element of a given series is a pair
[x_axis_value, y_axis_value].

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=line_chart"
 -d "key=example_line"
 -d 'data={"subtitle": "averages from last week",
 "description": "Sales in our dept",
 "series_list": [[["23.09", 8326], ["24.09", 260630], ["25.09", 240933], ["26.09", 229639], ["27.09", 190240], ["28.09", 125272], ["29.09", 3685]],
 [["23.09", 3685], ["24.09", 125272], ["25.09", 190240], ["26.09", 229639], ["27.09", 240933], ["28.09", 260630], ["29.09", 108326]]]}'

– this will give two plots on a single chart (on x-axis there will be “23.09”,
“24.09”, “25.09” and so on) with heading “Sales in our dept” and subtitle
“averages from last week”.

Configuration

value = {<jqplot_config>}

where:

	
jqplot_config

	Configuration params in the form described by jqPlot documentation [http://www.jqplot.com/tests/line-charts.php].

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/example_line
 -X POST
 -d 'value={"grid": {"drawGridLines": true,
 "gridLineColor": "#FFFFFF",
 "shadow": false,
 "background": "#000000",
 "borderWidth": 0}}'

– this will set up the grid (in white color), black background and will turn
off shadow effects as well as borders.

Note

In case of displaying multiple plots on a single chart (e.g. for more than
one data series) you have to keep in mind that the x_axis_value values
should be the same for all of those plots.

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

cumulative_flow

[image: _images/cumulative-flow.png]
Description

Cumulative chart using jqPlot [http://www.jqplot.com/] library. Allows to
display up to seven plots on a single chart.

Content

data = {
 "title": "<title>",
 "series_list": [{"label": "<label1>", "series": [<val1>, <val2>, ...]},
 {"label": "<label2>", "series": [<val1>, <val2>, ...]}]
}

where:

	
title

	Title to be displayed above the labels.

	
series_list

	A container (i.e. list of objects) for the data; each such object
corresponding to a single plot consists of two keys: label and
series, where the latter is a list of values constructing the plot.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=cumulative_flow"
 -d "key=<tile_id>"
 -d 'data={"title": "My title:",
 "series_list": [{"label": "label 1", "series": [0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 0, 0, 2, 0]},
 {"label": "label 2", "series": [0, 5, 0, 0, 1, 0, 0, 3, 0, 0, 0, 7, 8, 9, 1]}]}'

Configuration

value = {"ticks": [[<key>, "<value>"], [<key>, "<value>"], ...]}

where:

	
ticks

	List of elements defining x-axis; each such element is a list of form [k,
v] where k is an oridinal number designating position of such tick and
v is a string which will be displayed in that place.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
 -X POST
 -d 'value={"ticks": [[1, "mon"], [2, "tue"], [3, "wed"], [4, "thu"], [5, "fri"], [6, "sat"], [7, "sun"]]}'

Note

If series_list contains more than one object (which is the case 99% of
the time), each one of them should have series list of the same length -
and this lenght should be equal to the number of ticks.

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

simple_percentage

[image: _images/simple-percentage.png]
Description

Tile displaying three arbitrary values (with labels) - one bigger (“main”
value) and two smaller (at the bottom-left and bottom-right of the tile). It is
possible to change background color for the main value.

Content

data = {
 "title": "<title>",
 "subtitle": "<subtitle>",
 "big_value": "<value1>",
 "left_value": "<value2>",
 "right_value": "<value3>"
 "left_label": "<label1>",
 "right_label": "<label2>"
}

where:

	
title, subtitle

	They serve as a label for the big_value (“main” value).

	
big_value

	Main value, which treated as a string, so it can contain symbols like % etc.

	
left_value, right_value

	Smaller, bottom-left and bottom-right values.

	
left_label, right_label

	Labels for above values.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=simple_percentage"
 -d "key=<tile_id>"
 -d 'data={"title": "My title", "subtitle": "My subtitle", "big_value": "100%",
 "left_value": "50%", "left_label": "smaller label 1",
 "right_value": "25%", "right_label": "smaller label 2"}'

Configuration

value = {
 "big_value_color": "<color>",
 "fading_background": <BOOLEAN>
}

where:

	
big_value_color

	Background color for big_value in a hexadecimal form or color name (e.g.
#94C140 or green).

	
fading_background

	Turns on/off background pulsation for big_value (may be useful for alerts etc.).

New in version 1.3.0.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
 -X POST
 -d 'value={"big_value_color": "green", "fading_background": true}'

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

listing

[image: _images/listing.png]
Description

Very simple tile for displaying list of entries (up to seven) of arbitrary
content. For more sophisticated needs there is a fancy_listing tile.

Content

data = {"items": ["<entry1>", "<entry2>", ..., "<entry7>"]}

where:

	
items

	List of items (entries) to display.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=listing"
 -d "key=<tile_id>"
 -d "data={"items": ["Leader: 5", "Product Owner: 0", "Scrum Master: 3", "Developer: 0"]}"

Configuration

This tile does not offer any configuration options.

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

bar_chart

[image: _images/bar-chart.png]
Description

Tile displaying data in the form of horizontal bar charts. Each cart may
consist of one or more series of data - in the latter case, such bars are
grouped respectively. There are no “hard” limits when it comes to the number of
charts/series, although we suggest to keep them down to 3 charts of 2 series
each.

Content

data = {
 "title": "<title>",
 "subtitle": "<subtitle>",
 "ticks": ["<label1>", "<label2>", "<label3>" ...],
 "series_list": [[<val1>, <val2>, <val3>, ...],
 [<val1>, <val2>, <val3>, ...]]
}

where:

	
title, subtitle

	Title and subtitle displayed on the top of the tile.

	
ticks

	Labels to be displayed on the left side of the charts.

	
series_list

	List of series, as name suggests. [[1, 2]] will give one chart of two
bars, [[3, 4, 5], [6, 7, 8]] will give two charts of three bars each.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=bar_chart"
 -d "key=<tile_id>"
 -d 'data={"title": "The A-Team",
 "subtitle": "Velocity (Last tree sprints)",
 "ticks": ["n-2", "n-1", "Last (n)"],
 "series_list": [[49, 50, 35], [13, 45, 9]]}'

Configuration

This tile does not offer any configuration options.

Note

In case of displaying more than one charts on the same tile, the number of
values in series_list for every chart should be the same (and they
should be equal to the number of ticks.

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

fancy_listing

[image: _images/fancy-listing.png]
Description

This tile is a more sophisticated version of listing tile offering colored
labels and centering options. Each entry is an object containing three keys:
label, text and description. Threrefore, data (i.e. content) is
just a list of such objects.

Content

"data" = [
 {"label": "<label1>", "text": "<entry1>", "description": "<desc1>" },
 {"label": "<label2>", "text": "<entry2>", "description": "<desc2>" }
]

where:

	
label

	Smaller label displayed on the left which can be colored.

	
text

	A textual entry to be displayed next to the label.

	
description

	Subtitle displayed below text element.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=fancy_listing"
 -d "key=<tile_id>"
 -d 'data=[{"label": "My label 1", "text": "Lorem ipsum", "description": "such description" },
 {"label": "My label 2", "text": "Dolor sit", "description": "yet another" },
 {"label": "My label 3", "text": "Amet", "description": "" }]'

Configuration

value = {
 "vertical_center": <BOOLEAN>,
 "<position>": {
 "label_color": "<color>",
 "center": <BOOLEAN>
 },
}

where:

	
vertical_center

	Centers vertically all the entries (along with their labels).

New in version 1.3.0.

	
position

	Tells which entry (starting from 1) should be a subject to label_color
and center (specified as subkeys of position).

	
label_color

	Sets the color of label for the entry given with position. Color can
be specified in a hexadecimal form (#RRGGBB) or by name (e.g.
green).

	
center

	Centers horizontally entry’s text and description (it does not
affect label’s position).

New in version 1.3.0.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
 -X POST
 -d 'value={"vertical_center": true,
 "1": {"label_color": "red", "center": true},
 "3": {"label_color": "green", "center": true }}'

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

big_value

[image: _images/big-value.png]
Description

This is a variation of simple_percentage tile. It has slightly different
footer (four possible values instead of just two; values are displayed on the
right side of the label instead of below), and the main value (big_value)
is little bit bigger.

Content

data = {
 "title": "<title>",
 "description": "<description>",
 "big-value": "<value>",
 "upper-left-label": "<label>",
 "upper-left-value": "<value>",
 "lower-left-label": "<label>",
 "lower-left-value": "<value>",
 "upper-right-label": "<label>",
 "upper-right-value": "<value>",
 "lower-right-label": "<label>",
 "lower-right-value": "<value>"
}

where:

	
title, description

	Title and description (subtitle) for the tile.

	
big_value

	Main value, which treated as a string, so it can contain symbols like % etc.

	
upper-left-value, lower-left-value, upper-right-value, lower-right-value

	Smaller, bottom-left and bottom-right values.

	
upper-left-label, lower-left-label, upper-right-label, lower-right-label

	Labels for above values.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=big_value"
 -d "key=<tile_id>"
 -d 'data={"title": "Tickets",
 "description": "number of blockers",
 "big-value": "314",
 "upper-left-label": "critical:",
 "upper-left-value": "1020",
 "lower-left-label": "major:",
 "lower-left-value": "8609",
 "upper-right-label": "minor:",
 "upper-right-value": "7532",
 "lower-right-label": "all:",
 "lower-right-value": "19 853"}'

Configuration

value = {
 "big_value_color": "<color>",
 "fading_background": <BOOLEAN>
}

where:

	
big_value_color

	Background color for big_value in a hexadecimal form or color name (e.g.
#94C140 or green).

	
fading_background

	Turns on/off background pulsation for big_value (may be useful for
alerts etc.).

New in version 1.3.0.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
 -X POST
 -d 'value={"big_value_color": "green", "fading_background": true}'

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

just_value

[image: _images/just-value.png]
Description

Tile for displaying single, short information with a possibility to change its
background color.

Content

"data" = {
 "title": "<title>",
 "description": "<description>",
 "just-value": "<value>"
}

where:

	
title, description

	Title and description (subtitle) for the tile.

	
just-value

	Value to be displayed on the tile, with optionally colored background.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=just_value"
 -d "key=<tile_id>"
 -d 'data={"title": "Next release:", "description": "(days remaining)", "just-value": "23"}'

Configuration

value = {
 "just-value-color": "<color>",
 "fading_background": <BOOLEAN>
}

where:

	
just-value-color

	Background color for just-value in a hexadecimal form or color name (e.g.
#94C140 or green).

	
fading_background

	Turns on/off background pulsation for just-value (may be useful for
alerts etc.).

New in version 1.3.0.

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
 -X POST
 -d 'value={"just-value-color": "green", "fading_background": true}'

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

advanced_plot

[image: _images/advanced-plot.png]
Description

This tile is for more demanding users. It basically allows to display arbitrary
type of chart/plot from the jqPlot [http://www.jqplot.com/] library, along
with the title and description (both are optional).

Before you start experimenting with jqPlot library, we suggest to familiarize
yourself with this manual [http://www.jqplot.com/docs/files/usage-txt.html#jqPlot_Usage]. After that
you should check out options tutorial [http://www.jqplot.com/docs/files/optionsTutorial-txt.html#Options_Tutorial]
and options summary [http://www.jqplot.com/docs/files/jqplot-core-js.html].

Here you will find some examples [http://www.jqplot.com/deploy/dist/examples/].

Content

"data" = {
 "title": "<tile>",
 "description": "<description>",
 "plot_data": "<data>"
}

where:

	
title, description

	Title and description (subtitle) for the tile.

	
plot_data

	Data that will be fed directly to your plot. Its form depends on the
specific type of plot that you are going to use - see jqPlot’s documentation
for the details.

Example (using horizontal Bar Chart [http://www.jqplot.com/deploy/dist/examples/barTest.html] - third example
from the top):

curl http://localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=advanced_plot"
 -d "key=<tile_id>"
 -d 'data={"title": "Metric Tons per Year", "description": "",
 "plot_data": [[[2,1], [4,2], [6,3], [3,4]],
 [[5,1], [1,2], [3,3], [4,4]],
 [[4,1], [7,2], [1,3], [2,4]]]}'

Note

Keep in mind that advanced_plot can display arbitrary charts from jqPlot
library, and more than often they are quite different when it comes to the
parameters required etc.

Configuration

value = {
 "value": "<jqplot_config>"
}

where:

	
value

	Raw configuration that will be passed directly to jqPlot and which should
obey the rules defined by the jqPlot library. Internally, this config will
be passed as $.jqplot(some-container, some-data, our-config).

If such configuration contains one of jqPlot’s renderers, its name should be
passed as a string, according to the table below:

	jqPlot’s renderer
	string to send

	$.jqplot.BarRenderer
	"BarRenderer"

	$.jqplot.BlockRenderer
	"BlockRenderer"

	$.jqplot.BubbleRenderer
	"BubbleRenderer"

	$.jqplot.CanvasAxisLabelRenderer
	"CanvasAxisLabelRenderer"

	$.jqplot.CanvasAxisTickRenderer
	"CanvasAxisTickRenderer"

	$.jqplot.CanvasTextRenderer
	"CanvasTextRenderer"

	$.jqplot.CategoryAxisRenderer
	"CategoryAxisRenderer"

	$.jqplot.DateAxisRenderer
	"DateAxisRenderer"

	$.jqplot.DonutRenderer
	"DonutRenderer"

	$.jqplot.EnhancedLegendRenderer
	"EnhancedLegendRenderer"

	$.jqplot.FunnelRenderer
	"FunnelRenderer"

	$.jqplot.LogAxisRenderer
	"LogAxisRenderer"

	$.jqplot.MekkoAxisRenderer
	"MekkoAxisRenderer"

	$.jqplot.MekkoRenderer
	"MekkoRenderer"

	$.jqplot.MeterGaugeRenderer
	"MeterGaugeRenderer"

	$.jqplot.OhlcRenderer
	"OhlcRenderer"

	$.jqplot.PieRenderer
	"PieRenderer"

	$.jqplot.PyramidAxisRenderer
	"PyramidAxisRenderer"

	$.jqplot.PyramidGridRenderer
	"PyramidGridRenderer"

	$.jqplot.PyramidRenderer
	"PyramidRenderer"

Example (using horizontal Bar Chart [http://www.jqplot.com/deploy/dist/examples/barTest.html] - third example
from the top):

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
 -X POST
 -d 'value={
 "seriesDefaults": {
 "trendline": {"show": false},
 "renderer":"BarRenderer",
 "pointLabels": {"show": true, "location": "e", "edgeTolerance": -15},
 "shadowAngle": 135,
 "rendererOptions": {"barDirection": "horizontal"}
 },
 "axes": {"yaxis": { "renderer": "CategoryAxisRenderer"}}}'

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

 	Tiles

norm_chart

[image: _images/norm-chart.png]

New in version 1.3.0.

Description

“Curve vs norm” style chart. Suitable for situations, when you want to
compare some data with expected value (“norm”) or put an emphasis on y-axis
values.

Content

"data" = {
 "title": "<title>",
 "description": "<description>",
 "plot_data": [[<series1>], [<series2>], [<series3>], ...]
}

where:

	
title, description

	Title and description (subtitle) for the tile.

	
plot_data

	Data for charts in a form of list of series, where each series designates
single chart; each element of a given series is a pair [x_axis_value,
y_axis_value].

Example:

curl http://localhost:7272/api/v0.1/<api_key>/push
 -X POST
 -d "tile=norm_chart"
 -d "key=<tile_id>"
 -d 'data={"title": "My title",
 "description": "Some description",
 "plot_data": [[[1, 2], [3, 5.12], [5, 13.1], [7, 33.6], [9, 85.9], [11, 219.9]],
 [[6, 2], [3, 5.12], [5, 13.1], [7, 33.6], [9, 85.9], [11, 219.9]]]}'

Configuration

value = {
 "easyNorms": [["<color>", <y-value>, <line_width>], ...]
}

where:

	
easyNorms

	List of norms to be displayed. Each norm consists of three elements:

	
color

	Color which given norm should use - in a hexadecimal form or color name
(e.g. #94C140 or green).

	
y-value

	Value for the norm.

	
line_width

	Line thickness for the norm (in pixels).

Example:

curl http://localhost:7272/api/v0.1/<api_key>/tileconfig/<tile_id>
 -X POST
 -d 'value={"easyNorms": [["yellow", 200, 2], ["green", 100, 2]]}'

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

API

One of the advantages of Tipboard is flexibility in feeding tiles with data. We
achieve that by providing a simple, REST API - that way, your feeding scripts
may be written in any language (Python, Ruby, Bash, Perl, PHP - you name it).
The only limitation is the format of input data accepted by a given tile type
(see Library of available tiles for the details).

To experiment with resources specified below you can use tools like Advanced
REST Client [http://chromerestclient.appspot.com/] (Chrome extension), or
cURL [http://curl.haxx.se/], if you prefer working from command line. For
Python programmers, there’s an excellent Requests [http://docs.python-requests.org/en/latest/] library, which we strongly
recommend.

API key

To send anything to your tiles, first you have to get your API key. This unique
key is generated for you automatically during Tipboard’s installation and may
be read in the ~/.tipboard/settings-local.py file - it is a sequence of
characters starting with API_KEY, e.g.:

API_KEY = 'e2c3275d0e1a4bc0da360dd225d74a43'

If you can’t see any such string, just add the key manually (it doesn’t have
to be as long and hard to memorise as the one above, though).

Note

Every change in settings-local.py file requires restart of the
application.

Available resources

Current API version: v0.1

Note

In 99% of cases, probably only push and tileconfig will be of
interest to you.

	
POST /api/(api_version)/(api_key)/push

	Feeds tiles with data. Input data should be provided in the format that
complies with the one used in a desired tile. Note: a tile to which data
will be sent is defined by the key included in the data sent rather than by
tile_id as in cases below.

	Parameters:	
	api_version – version of API to be used

	api_key – your API key

Example request:

POST /api/v0.1/my_key/push
Host: localhost:7272
POST data: tile=text key=id_1 data={"text": "Hello world!"}

Example response:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

Tile's data pushed successfully.

	
POST /api/(api_version)/(api_key)/tileconfig/(tile_id)

	Configures tile specified by tile_id. The configuration should comply with
the specification of a given tile type.

	Parameters:	
	api_version – version of API to be used

	api_key – your API key

	tile_id – unique tile’s ID from your layout_config.yaml file

Example request:

GET /api/v0.1/my_key/tileconfig/id_1
Host: localhost:7272
POST data: value={"font_color": "#00FF00"}

Example response:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

Tile's config updated.

	
DELETE /api/(api_version)/(api_key)/tileconfig/(tile_id)

	Resets configuration of the tile specified by tile_id.

	Parameters:	
	api_version – version of API to be used

	api_key – your API key

	tile_id – unique tile’s ID from your layout_config.yaml file

Example request:

DELETE /api/v0.1/my_key/tileconfig/id_1
Host: localhost:7272

Example response:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

Tile's config deleted.

	
GET /api/(api_version)/(api_key)/tiledata/(tile_id)

	Retrieves data belonging to the tile specified by tile_id. May be useful for diagnostics.

	Parameters:	
	api_version – version of API to be used

	api_key – your API key

	tile_id – unique tile’s ID from your layout_config.yaml file

Example request:

GET /api/v0.1/my_key/tiledata/id_1
Host: localhost:7272

Example response:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

{
 "tile_template": "text",
 "meta": {
 "font_color": "#ff9618",
 "font_size": "45px"
 },
 "data": {
 "text": "Lorem ipsum."
 },
 "id": "id_1"
}

	
DELETE /api/(api_version)/(api_key)/tiledata/(tile_id)

	Removes everything belonging to the tile given by tile_id from Redis.

	Parameters:	
	api_version – version of API to be used

	api_key – your API key

	tile_id – unique tile’s ID from your layout_config.yaml file

Example request:

DELETE /api/v0.1/my_key/tiledata/id_1
Host: localhost:7272

Example response:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

Tile's data deleted.

	
GET /api/(api_version)/(api_key)/info

	Provides information on project and user configuration. This resource has
been created for debugging purposes.

	Parameters:	
	api_version – version of API to be used

	api_key – your API key

Example request:

GET /api/v0.1/my_key/info
Host: localhost:7272

Example response:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

{
 "tipboard_version": "1.3.0",
 "project_layout_config": "/home/pylabs/.tipboard/layout_config.yaml",
 "redis_db": {
 "host": "localhost",
 "db": 4,
 "port": 6379
 },
 "project_name": "pylabs"
}

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

Extras

Here you will find description of components which are not a part of the
Tipboard project per se, although they may be useful to some of its users.
Assuming standard installation, you can find them here:

<path_to_your_virtualenv>/lib/python2.7/site-packages/tipboard/extras

Note

If you have developed something of similar nature and you are willing to
share it, we encourage you to make a pull request to our repo. Thanks!

jira-ds.py

Script for fetching frequently used data from JIRA [https://www.atlassian.com/software/jira] issue tracker, in order to present
it on your dashboards. Returns requested data to stdout in JSON format. For
the list of available options see jira-ds.py --help.

This script is basically a wrapper around jira-ds.js, so those two files
shouldn’t be separated. Requires CasperJS [http://casperjs.org/] and
PhantomJS [http://phantomjs.org/] installed somewhere in your path (we
suggest using npm [http://nodejs.org/] for that).

Before you start using them, remember to fill in JIRA_CREDENTIALS and
JIRA_BASE_URL (in jira-ds.py) as well as url_jira and
url_jira_login (in jira-ds.js) with the your JIRA credentials, location
of your JIRA instance and its login page.

Tested with JIRA 6.1.x.

client_code_example.py

Simple Python script targeted to novice users serving as an example how to glue
together three steps: fetching data, processing it and then sending it to the
tile. See comments in the source code for further explaination.

fabfile.py

Script for quick, automated installations on remote machines.

You need to have fabric [https://github.com/ronnix/fabtools] and
fabtools [http://fabtools.readthedocs.org] to use remote install script.

Run:

fab -H root@host install

– it will install all needed .deb packages, create virualenv and set up
Tipboard service using master branch from our main repo.

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Tipboard 1.4.0 documentation

Change Log

1.4.0

Released on August 28, 2014.

	Tipboard got open-sourced!

1.3.1

Released on July 23, 2014.

	Added extensive documentation.

	Numerous fixes in ‘jira-ds’ script (e.g added timeouts).

	Fixed definitions of colors available for tiles.

	Fixed checking for expired data (+ made it timezone aware).

	Added integration with Travis.

	Changed default size of the log files.

1.3.0

Released on February 17, 2014.

New features:

	Fading highlighter (for just_value, big_value and simple_percentage tiles).

	Fancy centering options for fancy_listing tile.

	Notifications on data expiration.

	New tile: norm_chart.

	Possibility to define more than one dashboard per application instance.

Bug fixes:

	Tiles no longer vanish when flipping is enabled.

	Characters like ‘.’ or ‘-‘ (and some others) in tiles’ ids are no longer
causing problems.

	Renderer names (like OHLCRenderer, MarkerRenderer, ShadowRenderer and
ShapeRenderer) can now safely be passed to tiles’ configs.

Others:

	Error messages displayed on tiles got more emphasis.

	Renderer names (in tiles’ configs) are now case insensitive.

	Added frontend tests and selector for tests.

1.2.0

Released on December 19, 2013.

This release brings new features and some minor bugfixes.

	New tiles: big_value, just_value, advanced_plot.

	Rewritten ‘jira-ds’ script with some new options (e.g. ‘maxResults’ for JQL).

	Completely new graphic theme - with new colors, fonts etc.

	Fixed existing tests and some new added.

	Exceptions raised by JavaScript are now displayed on the tiles.

	Improved config handling for bar_chart, pie_chart and line_chart.

	Added possibility to specify specialized renderers for almost all plots
(except cumulative_flow).

1.1.0

Released on November 20, 2013.

This release contains multiple improvements and bugfixes:

	Tiles are no longer packages (i.e. folders).

	Reorganized files/folders structure.

	Massively reduced app’s settings.

	Simplified layout config (no more classes, only one keyword needed to get
tile flips working).

	New tiles: bar_chart, fancy_listing.

	Improved scaling of tiles + some cosmetic changes.

	Unique API key is generated automatically for every project.

	Fabric script for administrative installs

1.0.0

Released on November 06, 2013.

This is the first release of Tipboard.

	initial release

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 previous

 	Tipboard 1.4.0 documentation

License

 Copyright 2013-2014 Allegro Group

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

 search.html

 Navigation

 		Tipboard 1.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014, Allegro Group.
 Last updated on Aug 28, 2014.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_images/fancy-listing.png
Example "Fancy Listing”

e

New desc.

- new text Lorem Ipsum is
new desc 2

new text Lorem
new desc

new text 2
new desc 2

newlabel new text
new desc

newlabel2 new text 2
new desc 2

newlabel2 new text 2
new desc 2

_images/simple-percentage.png
Example "Simple Percentage”

new title

new subtitle

100 %

new left label new right label
new left value new right value

_images/big-value.png
Example "Big Value™

blockers:

number of blockers

314

critical: 1020 minor: 7532
major: 8609 all: 19 853

_images/listing.png
Example "Listing’

Leader 0/1

Scrum Master 0/0
Product Owner 0/0
Android 1/6

iOS 1/6

Windows 0/1
WWW light 0/1

_images/just-value.png
Example

Next release:

days remaining

23

_images/line-chart.png
Example “Line Chart"

new subtitle

new description

260630

260630
40033
90240 \

125272

240933

108325

38326
3685 3685

_images/advanced-plot.png
Advanced Plot - meter gauge Advanced Plot - bubble plot Advanced Plot - waterfall chart

new title new title new title

new desc new desc new description

Bugath

Metric Tons per Year r

_images/bar-chart.png
Example "Bar Chart™

The A team

Velocity (Last ree sprints)

_images/norm-chart.png
EXANPLE “NORM CHART

title

DESCRPTION
=

m
50

0

_images/text.png
Text tile sample.

Lorem ipsum dolor sit amet, consectetur adipisicing
i, sed do eiusmod tempor incididunt utabore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco labors nisi ut aliquip ex
a commodo consequat. Duis aute irure dolor in
reprehendefitin voluptate velit esse cillum olore eu
fugiat nulla pariatur. Excepteu sint occaecat
cupidatat non proident, suntin culpa qui officia
deserunt moliitanim id est laborum.

_images/cumulative-flow.png
‘Example “Cumulative Flow

Unresolved:

blocker
critical
major
minor
trivial

10

@

_images/pie-chart.png
Example pie

new title

